A STUDY OF SPATIAL ORIENTATION IN A VIRTUAL WEIGHTLESS ENVIRONMENT

Part 2 Causes of spatial cognition errors

Hirofumi AOKI, Ryuzu OHNO and Takao YAMAGUCHI

In Part 1, a simulation system was developed to examine human spatial orientation in a virtual weightless state. By conducting experiments in several routes of connected modules, we found some relevant variables for spatial cognition errors. Part 2 clarifies the causes of spatial cognition errors by the similar experiments using more complicated routes. The results showed the errors were able to be explained by two causes. One cause was that subjects did not recognize the rotation of the frame of reference, especially more often when they turned in pitch direction rather than in yaw. The other cause was that subjects were incorrect in the place, the direction, and the sequence of turns.

Keywords: Weightlessness, Spatial Orientation, Virtual Reality

1. 環

重力によって上手方向が見知れない無重力環境下の内部空間では、自身の姿勢と位置、そして現在いる部屋の位置関係を把握することの困難さが表われている。前報の1)では、このような重力環境下での空間認知の難易度に関すると考えられる変数によって重力の模擬状態を分類し、コンピュータグラフィックスを用いて仮想の無重力内部空間を作成した。バーチャルリアリティ（VR）シミュレーションにより、無重力環境を模擬した視点の移動が重力による拘束を受けない状態で、空間内部を被験者に体験させた。次節に述べる、被験者が与えた空間認知に関する課題の実験結果を分析し、影響要因としての変数の妥当性を示した。

前報の1)では、2または3つの節点を持つ9種の連結形状について、6名の被験者を用いて実験を行ったが、被験者数の減少や試験の簡単さから、空間の連結形状別に個人別の違いの特徴を解明するには至らなかった。そこで本研究では、新たに4つの節点を持つ9種の連結形状について、20名の被験者を用いて実験を行い、仮想無重力空間における空間認知の誤りの要因を明らかにすることを目的とする。

2. 実験方法

2-1 概要

本報告で用いた実験方法および実験装置は、前報の1)と同様である。複数のモジュール（宇宙ステーションを構成するユニット）が連結された仮想内部空間において、一端（出発点）から他端（終着点）まで移動する課題を被験者に与え、終着点における出発点の方向を答える「方向指示実験」と、体験した経路を模階により再現させる「移動経路実験」を行った。ヘッドマウントディスプレイ（HMD）を装着した被験者は、手元のコントローラを操作し仮想空間内を移動する。被験者の頭部の動きと画面は連動していない。空間拡散の把握を模階に実験から、その内部での被験者の位置の姿勢の把握の仕方を方向指示実験から調べる。

実験の手順は前報の1)と同様に、被験者は実験に先立ち、コントローラの操作に慣れるため練習用の空間内で十分練習した後、自らの操作により実験空間内を移動体験する。それらの移動は、出発点から終着点までの一方のみである。終着点にたどり着くと、まず出発点の方向を指示し、その後体験した空間の模階を組み立てることを1回の試行とし、各形態につまり連続2回の試行を行うが、被験者は各試行の終了時に正解を知らずならない。
ここで、以降の議論において、被験者の移動方向を明確にするために、身体を中心とした座標系（身体座標系）を定義する（図1）

1

。身体を中心に前後方向をx軸、左右方向をy軸、足先から頭顶部方向をz軸とし、各自は重心で交わる。また、各軸周りの回転をそれぞれroll、pitch、yawとする。

方向指示実験では、教示により頭部と身体は固定された状態として、終了点における被験者の視線方向に対する出発点の方向を被験者に指示する。同時に、自身を中心に上下方向については水平、仰角45°、傾角45°の3方向、水平面上の方位角（左右方向）については前後、左右、およびその中の8方向に分割し、それらの組み合わせによる24方向と、上下方向である真上および真下を加えた計26方向のいずれかを最も近い方向を、言葉により「左方斜め下」とようなように答えさせ、記録する（図2）。

模様組立実験では、被験者は個別の立方体（各3m×3m×15m）と立方体（各3m×3m×15m）のモジュールの模様（スティルフォーム製60分の1スケール）を、交互に接続していく。組み立ては、まず立方体のモジュールの端に貼り部分に立方体のモジュールを付けて、その立方体の残り4方向のいずれに次の立方体のモジュールが繋がるかを考え、接続する。これを交互に繰り返し、体験した空間の連結状態を組み立てていく。

以下は、簡単のため、特に明記がない限り、「左」「右」「上」は身体座標系でyaw方向の左右、「上」「下」はpitch方向の上下とする。

2-2 実験空間

前報（1）での空間観知に関連が確認された空間の連結状態の変数を表1に示す。これに従い、5つの立方体のモジュールおよびそれらを連結する4つの立方体のモジュールをつなげ、4つのスケルトを連結形状を分類し、その中から本実験に用いる形状を選択する。表2に示す2つの立方体の連結および空間の連結形状は、幾何学的面数と身体姿勢を考慮した面数の変数を満たす形状の中の一例である。今回はの実験では、表2右端に示すAからIの9種の形状を用いる。図1に示された形状は、前報（1）で用いた形状とその番号である。本報告で用いる各形状を選択する上での考察した点を以下に述べる。

- 一つの立方体で左右へ回転移動する形状で、各面の影響を調べるための形状（形状A、E）。
- 各面の影響を調べるための形状（形状A、E）。
- 上下および左右方向へ交互に回転移動することの影響を調べるための形状（形状D、I）。
- 上下または下方へ、2回連結して「J」の形状に回転移動する影響を調べる形状（形状G、H）。
- 同一の位置を2回連結して「コ」の形状に回転移動する影響を調べる形状（形状A～Cおよび形状E～I）。
- 各モジュール間は壁で仕切られており、先を直通することはできない。次のモジュールに接続する面の中央部分のみにあり、ハッチを模した灰色の円形部分があり、そこを突き抜けることで、被験者の視点はモジュール間を移動することができる。また、各モジュール内の壁面をクリーム色（マッサル表示色および平均57.9/3）に統一することで、床・壁・天井の区別をなくし、空間の連結形状のみが空間認知に与える影響を調べる。
被験者は20代の男女23名を用いた。そのうち3名が気分を悪くするなどして実験を途中で中止したため、男性12名、女子8名の計20名から欠損のないデータが得られた。空間の提示順序によると結果の順位を考慮して、10名（男子6名、女子4名）の被験者には、形状番号C→E→I→F→D→H→G→A→Bの順序で実験を行い、残り10名は逆の順番で行った。

3．実験結果
3-1．空間の連結形状別の結果

空間の連結形状別の各実験の結果を図3に示す。縦軸は、各形状の全試行回数（各形状20回）に対して試った試行回数の割合（「誤った試行回数」「各形状の試行回数を全試行回数×100％」）を試行回別に示す。ここでは、方向指示実験の誤りとは、前述の26通りある指示方向のうち、正解の方向以外を答えた場合である。

また、図3の縦軸における誤りとは、被験者が体験した形状以外を指標とした場合である。

方向指示実験では、設定した変数である「幾何学的面数」の増加に伴い、また同一の幾何学的面数では「曲折数」や「身体姿勢を考慮した面数」の増加に伴い、誤りの割合が増加しており、前報で設定したこれらの変数の妥当性を再確認する結果となった。例えば、形状Eでは「曲折数」は4であるが、重力下ではなく一定水平面内の回転移動であるため「幾何学的面数」および「身体姿勢を考慮した面数」が1である。形状B、C、Dのように「曲折数」は少ないが「幾何学的面数」および「身体姿勢を考慮した面数」が多い形状により誤りの割合は少ない結果となった。

模型組立実験においても、方向指示実験の結果とほぼ同様の傾向を示した。しかし、形状Eの誤りの割合は形状B、Cより多いことから、模型組立実験では曲折数が誤りに影響していると考えられる。また、形状Gでは誤りの割合がやや少なく、形状Hで誤りの割合が一番多かった。この理由については、後で考察する。また、2回の試行を行うことによる被験者の学習の効果については、方向指示実験および模型組立実験ともに、第1回目および第2回目の試行の方が統計的に有意に誤りが少なかった（χ²検定でp<0.01）。

3-2．被験者別の結果

次に、被験者別の方向指示実験および模型組立実験の結果を図4に示す。従来の地上における空間認識に関する研究では、個人によって方向指示や空間構成の把握が異なっていることが明らかになっている引用1、引用2。縦軸は、各被験者の全試行回数（9形状×2試行回=18回）のうち誤った割合を示し、試行回別に分けている。横軸は、方向指示実験において誤りの少ない被験者の順に並べてある。方向指示実験の結果では、誤る割合が20％に満たない被験者から、90％以上に達する被験者まで、個人によって大きな差があることが分かる。模型組立実験の結果をみると、全く誤らない被験者から80％以上誤る被験者まで、こちらも被験者間のばらつきが大きかった。しかし、方向指示実験と模型組立実験の誤りの割合の相関はあくまで薄くはなく（相関係数r=0.71）、被験者12～14のように、模型の組み立ての成績が良くても、方向指示を誤る被験者などが見られた。
4-1-1 方向指示について

前報の第1および第2報の実験結果から、方向指示を誤る主な要因として、認識した空間の連続形状が、曲折及び空転における回転移動年に、間接路状態に対して、直接路状態に転換することを誤認識して方向を指示した場合と、誤って認識した空間の連続形状をもとに自身の位置や姿勢を考えて方向を指示した場合が考えられる。そこで、前者を「身体座標系の誤認」、後者を「連続形状の誤認」とし、以下にそれぞれの場合を説明する。

身体座標系の誤認

前報の第1では、仮定した空間の連続形状に関する数の妥当性を確認するために、曲折数が1から5の4種の形状を用いた。その考察において、模型は正しく路を立っているにもかかわらず、曲折における回転移動により間接路状態に対して、直接路状態に対する認識を転換していることを認識せずに方向を指示したと考えられる誤りが見られた。

例えば、図5に示すように1回曲がる形状において、移動中に身体座標系の回転を正しく認識した被験者は、直進中での自身の視線方向に対して出発点の方向を「後方」と答え、が図5左、実際には前方に回転する映像を体験しているにもかかわらず、地上における出発への移動のように、回転移動に認識したと考えられる被験者は「後方」と答える（図5右）。

このように、身体座標系の回転を誤認したために方向を誤ると考えると、多くの場合について説明できた。そこで、本報告の実験結果に見られた、方向指示を誤っているが模型組立は正しい回答についても同様に考え、各曲折で身体座標系の回転を誤認した場合を考えた形状における指示方向を想定し、それらに当てはまる方向を指示した回答を「身体座標系の誤認」と分類する。

3-2-2 模型の組み立て形状について

模型の組み立て誤りを要因として、大きく分けて以下の2つが考えられる。

身体座標系の誤認

曲折において身体座標系が回転することを考慮せずに、誤った空間の連続形状を組み立てると考えられる場合がある。

例えば、図6-aは、表2の形状2について、すべての曲折で身体座標系の回転を正しく認識した時の組み立て形状である。しかし、2回の上方への移動の際に、空間座標系に対して身体座標系が回転したことを考慮せずに、図6-bのように直進上方へ移動したと誤って認識し、それら組み立てたと思われる例が見られた。

また、模型を組み立てる際に、身体座標系でなく、出発点における視点の位置と方向を基準とした空間座標系で模型を組み立てる場合を考えられた形状も見られた。再び形状1例をとると、正しい組み立て形状である図6-cに対して、空間座標系で組み立てた場合は図6-dのようなになる。

これらを合わせて、「身体座標系の誤認」と分類する。

曲がる場所・方向・路の誤認

被験者が移動体験した空間をモデルで再現する際に、連続形状の配置を適切と認識される場合である。すなわち、道の曲がり角をA〜Dでは、2つ目の方向で左と右の各1つずつで曲がるように模型組立を進めてしまう「曲がる場所」を誤認する。

表3 方向指示実験および模型組立実験の結果・分類項目とその割合

<table>
<thead>
<tr>
<th>方向指示実験</th>
<th>模型組立実験</th>
<th>両方とも正答</th>
<th>両方とも誤答</th>
<th>一方正答</th>
<th>一方誤答</th>
<th>超回転</th>
<th>無回答</th>
</tr>
</thead>
<tbody>
<tr>
<td>正答</td>
<td>42.2</td>
<td>18.9</td>
<td>7.2</td>
<td>9.4</td>
<td>44.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>誤答</td>
<td>22.2</td>
<td>18.9</td>
<td>9.1</td>
<td>11.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>誤答</td>
<td>9.0</td>
<td>9.0</td>
<td>8.4</td>
<td>11.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>誤答</td>
<td>7.2</td>
<td>7.2</td>
<td>6.8</td>
<td>9.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表4 空間の連続形状別方向指示実験および模型組立実験の結果

<table>
<thead>
<tr>
<th>形状</th>
<th>方向指示実験</th>
<th>模型組立実験</th>
<th>両方とも正答</th>
<th>両方とも誤答</th>
<th>一方正答</th>
<th>一方誤答</th>
<th>超回転</th>
<th>無回答</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>28</td>
<td>33</td>
<td>22</td>
<td>25</td>
<td>15</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>30</td>
<td>22</td>
<td>25</td>
<td>15</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>30</td>
<td>35</td>
<td>25</td>
<td>22</td>
<td>15</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図5 上方移動時に身体座標系が回転することの認識の有無による指示方向の違い

図6 正しい組み立て形状(a)と座標系の誤りと思われる組み立て形状(b, c)の例(形状)
る場合や、「上－右」を「上－左」のように「曲がる方向」を誤る場合、そして、「上－右－上－右」を「右－上－右－左」のように、一連の「曲がる順序」を誤る場合がある。これらが要因と思われるの誤りを、「曲がる場合・方向・順序の誤認」と分類する。

それぞれの誤りの要因を、空間の連続形状別および被験者別にまとめ、それぞれの傾向を捉える。

4-2 空間の連続形状別傾向

上記に述べた誤りの要因の分類に基づき、空間の連続形状別に集計したものが表4である。各数値は、形状別の全試行（各形状40回）のうち、誤って回答された試行回数の割合を示す。

4-2-1 上下方向への回転の認識

形状A、B、Cは、それぞれ曲折数2の形状である。一水平面内での回転回りをする形状Aでは、速度座標系の誤認識される方向指示の誤りが無かったのに対し、上下方向へ移動する形状B、Cではそれぞれ38%、38%と高い割合を占める。自方向への移動に比べ、上下方向への移動では、速度座標系に対して速度座標系が回転することを誤認して方向を傾ける場合が多いといえる。

4-2-2 空間形状の複雑さと誤認の関係

曲折数の増加に伴い、模型組立実験の曲がる場所・方向・順序を誤る割合が増加している。曲折数などの平面構成の複雑さが増すと空間の関係性を把握することが難しくなることは、従来の地上における空間認識に関する研究において述べられている。無重力環境では、へ曲折だけでなく、幾何学的曲面や身体姿勢を考慮した曲面などの空間の3次元的複雑が空間構成の把握の難しさに関係することがある。

4-2-3 形状GとHの比較

前述3-1節で述べたように、模型組立実験の結果（図3下）において、形状Hは誤りが多く、形状Gは誤りが少ない。これは、形状Hでは、特にかみ分けを2回連続して移動すると、身体軸（図1のx軸）の方向が出発点の身体軸に対して上下反対になるがなかった。方向指針と方向に誤認し、横軸方向への移動を模型で組み立てると。空間座標系で左右に組み立てる誤り多かったためである。一方、形状Gは最後に上下へ2回連続して回旋移動するので、その時に身体軸の方向を上下反対に認識しても、模型組み立てには影響しないためと考えられる。

4-3 被験者別の傾向

既に図4で示したように、被験者間で実験の正答率に大きな差がある。被験者別の誤りの傾向を捉え、その対策を考えるため、被験者別に、実験の正答と誤った話を要因別に分類し、表5に示す。各数値は、被験者別の全試行（各被験者18回）のうち、誤って回答された試行回数の割合を示す。表5の方向指示およびモデル組立実験の正答割合を用いたクラスター分析（ウォード法）を用いて、各被験者の組み立ての傾向から、被験者を5つのグループに分類した（表5、図7）。また、試行回別での回答の変化を検討する。1回目と2回目の試行で回答が変動した場合の割合をグループ別にまとめ、表6に示す。例えば、表6左端の「回答の変化の種類」がIの場合、1回目の試行で方向指示実験は身体座標系の誤認識をして、モデル組立実験は正答の回答が、2回目の試行では正答に変化したことを示し、各数値はそれがグループ別に占める割合を示す。これらの図表から、グループ別に空間認識の特徴を捉える。

グループ1：身体座標系の回転を正しく認識し、回旋移動の方向も正しく覚えているため、表5の方向指示及びモデル組立実験の正答率が共に60%以上と成績の良い被験者のグループである。表6左端の「回答の変化の種類」がIの場合は1つであり、1回目の試行から空間の連続形状およびその内部での身体姿勢を正しく把握する場合が多い。また、表6左端のIIの割合が14%と比較的多く、1回目の試行では身体座標系の回転を誤る場合があるが、2回目では正しく認識することができる傾向がある。すなわち、このグループのモデル組立実験の正答率が50%台で、モデル組立実験の正答率が60%台の被験者、身体座標系の誤認識の割合は11%である。

グループ2：表5の方向指示実験の正答率が50%台で、モデル組立実験の正答率が60%台の被験者。身体座標系の誤認識の割合は11%である。

表5 被験者別の方向指示実験およびモデル組立実験の正答と誤りの割合

<table>
<thead>
<tr>
<th>グループ番号</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>方向指示</td>
<td>方向指示</td>
<td>方向指示</td>
<td>方向指示</td>
<td>方向指示</td>
<td>方向指示</td>
</tr>
<tr>
<td>被験者番号</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>身体座標系の認識</td>
<td>正答</td>
<td>正答</td>
<td>正答</td>
<td>正答</td>
<td>正答</td>
</tr>
<tr>
<td>連続形状の認識</td>
<td>誤認</td>
<td>誤認</td>
<td>誤認</td>
<td>誤認</td>
<td>誤認</td>
</tr>
<tr>
<td>調整</td>
<td>誤認</td>
<td>誤認</td>
<td>誤認</td>
<td>誤認</td>
<td>誤認</td>
</tr>
<tr>
<td>連続形状の認識</td>
<td>誤認</td>
<td>誤認</td>
<td>誤認</td>
<td>誤認</td>
<td>誤認</td>
</tr>
</tbody>
</table>

図7 被験者のグループ分け
以下と少ながる、曲がる場所、方向、順序の誤認の割合が22〜39%と高いグループである。このグループの通路に関しては、曲がる場所や方向などを把握することに、シナジーなどの局所的な視覚情報を空間内部に付加すれば、これらの誤りは減ると考えられる。

グループ2：模型組立実験の正答率は50〜72%であるが、方向指示実験の正答率が40%以下の被験者。表5において、誤るの要因が分散して見られるグループである。また、表6左端のIIの割合が20%であり、1回目で続き、2回目で転動でも身体座標系の回転を誤る場合がある。そのため、このグループの通路、グループ2の対象とした局所的視覚情報に加え、身体座標系の回転を意識させることで、空間全体の方向性を表す視覚的な手がかりを与える必要があると考えられる。

グループ3：移動方向は正しく覚えているために、模型組立実験の正答率は80%以上であるが、身体座標系の誤認の割合が33〜44%と高いため、方向指示実験の正答率が33〜39%である。また、表6右端のIIの割合が22%であり、1回目の試行で身体座標系を誤認するが、2回目で正しく認識することができる場合がある。したがって、このグループの通路は、空間全体の方向性を表す視覚情報を表すことで、身体座標系の回転を認識しやすく、自身の姿勢を正しく把握できると考えられる。

グループ4：方向指示及び模型組立実験の正答率が20%以下の被験者。模型組立実験で身体座標系の誤認や曲がる場所、方向、順序の誤認が多いため、方向指示実験で連結形の誤認が多い。また、表6右端のIVの割合が11%であり、1回目で続き、2回目の試行でも連結形の誤認や曲がる場所、方向、順序の誤認をして、向上が見られない場合がある。これらの被験者は空間の連結形および内部での姿勢を正確に把握するには、視覚的な手がかり以外の方法が必要かもしれない。また、試行中の不意の回転を元に戻せる場合も多かったが、これは空間内に方向性を示す視覚情報を与えることは解決できないと考えられる。

以上、空間の連結形や内部での自身の姿勢を誤る要因として、主に身体座標系を誤認する場合と、曲がる場所、方向、順序を誤認する場合があり、それぞれの要因による空間認知の傾向を個人別に類型化した。個人の類型により、それぞれの誤りを減らすために効果的な視覚的な手がかりは異なると考えられる。すなわち、曲がる場所、方向、順序を示すための局所的な視覚情報と、空間全体の方向性を示すための視覚情報が有効であると考える。

4-4 上下、左右の回転方向と身体座標系の誤認の関係
4-2-1 節において、曲折数が2つの形状で、一平面内において回転移動のみの形状Aと、上下方向への回転移動を含む形状B、C

表8 身体座標系を誤認した回転方向とその割合

<table>
<thead>
<tr>
<th>分類</th>
<th>正答</th>
<th>回答された正解の割合</th>
<th>誤答</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0</td>
<td>0.00%</td>
<td>100</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0.00%</td>
<td>100</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0.00%</td>
<td>100</td>
</tr>
</tbody>
</table>

表7 各曲折における身体座標系の正解と終着点における身体姿勢および方向指示

-- 90 --
の結果を比較した。左右方向に比べ、上下方向への移動時に、身体座標系の回転を誤認して自身の姿勢を誤ることが多いことが明らかになった。そこで、他の形状についても、上下と左右の回転方向の違いと、身体座標系の誤認の関係を考察する。

上下および左右方向への回転を伴う、7つの形状（B, C, D, F, G, H, I）について考察する。各形状で身体座標系の回転を誤認し、方向指示の傾向がどう違うとを考えられる回答を表7に示す。**表7の「回転誤認識」**と、「身体座標系の回転を誤認識した曲線」を示す。身体座標系の傾向は、左から順に、出発点から終着点までの曲線における回転方向と、それで身体座標系の回転を大きく誤認識したグループを「O」、「X」で示す。それぞれの回答を、正答と誤認した回転方向別に、次のたるいの5つに分類した。

イ。正答；方向指示が正答の回答（表7の「回答された試行数」欄の数字が0で囲まれている回答）。
ロ。上下X；左右方向の移動時の身体座標系の回転を正確なうえで、上下方向の移動時にそれを誤認したと考えられる回答（欄が薄いグレーで囲まれている回答）。
ハ。左右X；上下方向の移動時の身体座標系の回転を正確なうえで、左右方向の移動時にそれを誤認したと考えられる回答（欄が薄いグレーで囲まれている回答）。
ニ。上下左右X；上下、左右方向の移動時に身体座標系の回転を誤認したと考えられる回答（薄いグレーの欄が囲まれている回答）。
ホ。特定誤；同様の指示ででも、上記イ～ニのいずれかに複数が含まれている回答、特定の回答が（回答欄が無印の回答）。

以上の分類について、それぞれの回答が見られた試行数と、その割合を表8に示す。また、図9において、そのグラフを示す。表8および図9の数値は、左右方向の移動時に身体座標系の回転を正確なうえで、上下方向の移動時にそれを誤認したと考えられる回答の割合で、以下に示す。

5. VRシミュレーションの有効性の検討

前報の1と、無重力環境下の空間認知に関する問題を、地上の重力下における視覚的な無重力環境下で扱うことの有効性について検討した。方向指示や模擬の組み立てを行うときに、身体軸と重力方向が一致していることが回答に反映される可能性がある。そこで扱った図5に示す形状では、被験者は視覚情報から終着点での自身の姿勢を正確に認識しており、多くの場合は重力の方向が課題の遂行に影響ないことが推定された。

本報告の結果から、実験への重力の影響をさらに考察する。形状Gでは、下方向への2回連続して「コ」の字型に回転移動し、終着点で身体軸が下方向反となるので、もし重力が影響しているとすれば、そのでの姿勢や連続形状が重力と方向に誤って認識されると考えた。

方針指示実験では、誤りの説明がつかない場合と、試行中に不意に回転して元に戻せなかった場合の計37.5%（15試行回）を除いて考えられる。図9-aに示すように、身体軸が上下反対になることを正確に認識し、方向指示をした30%（12試行回）の回答や、図9-bのように、方向指示は誤っているが、終着点での身体軸は重力方向と一致しない15%（6試行回）の回答は、姿勢の把握に重力の方向が影響していないと考えられる。しかし、図9-cのように、終着点での身体軸の方向を、出発点での身体軸の方向のままに誤って方向指示をした17.5%（7試行回）の回答は、方向指示に重力方向が影響した可能性も考えられる。このような誤りの割合は多くないことから、視覚的な情報から自身の姿勢を把握する際に、重力方向の影響は少ないと考えられる。

模擬組立実験では、試行中に不意に回転して元に戻せなかった12.5%（5試行回）を除き、模擬を正しく組み立てられた割合は72.5%（29試行回）であった。次に、形状が正解であり、がる場所・方向・順序の誤認識、重力の影響ではないと考えられる回答は10%（4試行回）であった。また、図9-dのように、下方向への2回連続して2回連続して上下方向の形状Hでも、2回目の試行で同様の誤りをした。しかし、このような誤りは形状および形状Hで合計3.8%（80試行回13試行回）と少なく、しかも特定の個人に限られることから、模擬の組み立てを行う際の重力の方向はほとんど影響しなかったと考えられる。

以上、VRシミュレーションにより、無重力環境下における空間形状および内部での自身の姿勢の把握の仕方を調べる際に、重力方向が影響する場合は少なく、その方法は有効と考えられる。

6. 考

本研究では、前報その1で示した、仮想無重力環境下での空間認知の難易度の関係を視覚化した上で、より複雑な形状について多くの被験者を用いた実験により、以下の点が明らかになった。

1. 空間の形状およびその内部での姿勢が変える主な要因は、曲線における身体座標系の回転の誤認識と、曲がる場所・方向・順序の誤認識に説明できる。
2. 左右方向への回転移動を比べ、下方向への回転移動はする場合の方が、身体座標系の回転を誤認しない。
3. 個人によって、曲線における身体座標系の回転や、曲がる場所・方向・順序の誤認識は異なる傾向があり、それらの誤りの対策として、曲がる場所・方向・順序を示すための局所的な視覚情報と、身体座標系の回転を把握しやすいために空間全体の方向性を示す視覚情報が効果があると考える。

また、仮想無重力環境下で空間の連結形状および自身の姿勢を把握する際に、重力の影響が少ないことを再確認した。

次報その3では、これまで得られた結果を踏まえ、空間の連結
形状および内部での自身の姿勢を把握できる方向性の手がかりを系統的に変化させ、それら付加的な視覚情報の反映重力内部空間における空間認識への有効性を検討する。

謝辞：
本研究の一部は（財）日本宇宙フォーラムが推進している「宇宙環境利用に関する地上研究公募」プロジェクトの1環として助成を受けたものであり、ここに記して感謝の意を表します。

注：
1) 具体的な例として、ロシアの宇宙ステーションMIRのクルーは、モジュール同士の3次元的な連結形状をイメージすることが難しいことから、緊急時には避難モジュールに対する自分の位置が分からない等や避難する技術に関する人々があるかもしれませんという、潜在的な危険性を挙げている。
2) 新報では、一つの空間について4回連続の試行を行ったが、2回試行以降は成績の向上があり見られなかったので、本研究では2回連続の試行とした。
3) 実験後、どのような出発点の方向を回転したかを被験者に尋ねたところ、時計
点における自身の姿勢に合わせて音波を発した形状を回転させて方向を回転した
被験者と、固定された形状に対して、自身の姿勢を回転させる方向を回転した
被験者、そしてそれ以外の被験者に大別された。最初の被験者は、自己中心的
(eqocentric)系を基準としたと考えられ、2番目の被験者は環境中心の
(allocentric)系を基準にしたと考えられるが、どちらも方向と課題の成績に
は明確な関係は見られなかった。
また、被験者が実験時の被験者の組み立てる様子を観察しても、自身の体験
した回転運動を合わせて回転を指しながら組み立てられる被験者と、想定を回転
ずに組み立てる被験者が見られた。これらも方向指示実験の方略と同様に、前者は
eqocentricな系を、後者は allocentricな系を基準にしたと考えられ、前者は前後
よりも組み立て形状の誤りが少ない傾向が見られた。これは、2次元的な地図の
上方向と自身の進行方向が一致しない時に現れる運動の回転(spécialisé effectiveness)
を、周囲を回転させることで減少させるとの同様、運動を回転させることで
その方向と自身が体験した方向運動が一致させたため、モノの形状を誤らずに組
み立てることができたと考えられる。
4) 図9-aの例は、左右の移動順序も逆に組み立てていると考えられる。
5) これらについては、身体体験の回転を誤認して模型を組み立てた場合と絶対
体験の模型を組み立てた場合が同じ形状となり、区別できない場合もある。
6) これらの形状を、次に述べる「曲がる場合・方向・順序の誤認識」によるものと
考えることも可能である。例えば図6-bをそのように考えると、移動方向および
順序はどう回るかと、本論文の初めの上記の図9-aの例は、左右の移動順序も逆に組み立てていると考えられる。

参考文献：
1) 大野隆浩、斎木宏文、山口章夫：パーソナルリリビティによる無重力環境における空間認識に関する研究　その1　空間認識とモジュールの連結形状の関係　－　日本建築学会計画系論文集　第558号、pp. 71 - 77、2002.8
2) Howard, I.: Human Visual Orientation, John Wiley & Sons、pp. 6 - 7、1982
4) 槻谷昌浩、大野隆浩、横山彰：視環境シミュレーションによる経路探索の方略に関する　研究　日本建築学会計画系論文集　第512号、pp. 73 - 78、1998.10
8) 黒田信子、松井孝雄：左右の世界、左右の世界　－　上下の左右や難解な空間認識　の不思議　－　日経サイエンス、2001年10月号、pp.100-105、2001.16
11) 松井孝雄：空間認識の異方性と参照枠　－　絶対効果とはなぜ生じるのか　－　慶應義塾大学大学院社会学研究科要、Vol.34、pp.51-58、1992

(2002年6月10日投書受理、2002年10月30日採用決定)